In-season Changes In Heart Rate Recovery Are Related To Time To Exhaustion, But Not Aerobic Capacity In Collegiate Rowers

Kristin Haraldsdottir, Stacey Brickson, Jennifer Sanfilippo, Warren Dunn, Andrew Watson

University of Wisconsin, Madison, WI.

While maximal aerobic capacity (VO\textsubscript{2max}) is the gold standard in assessing aerobic fitness, heart rate recovery (HRR) has been suggested as a simple, noninvasive measure to monitor fitness. The relationship between in-season changes in VO\textsubscript{2max} and HRR in athletes remains unclear, however, and may be influenced by body composition.

Purpose: To determine if in-season changes in HRR are related to aerobic fitness in collegiate rowers and whether this relationship is influenced by body composition.

Methods: 22 female collegiate varsity rowers completed testing immediately before and after their competitive fall season. Lean body mass (LBM) and body fat percentage (BF%) were determined by dual energy xray absorptiometry (DXA). VO\textsubscript{2max} and time to exhaustion (T\textsubscript{max}) were determined during maximal rowing ergometer testing followed by 3 minutes of active recovery at 70W. Heart rate was measured continuously and HRR was expressed absolutely at 1, 2 and 3 minutes after test completion (HRR\textsubscript{1min}, HRR\textsubscript{2min}, HRR\textsubscript{3min}, respectively). Pre and postseason variables were compared using paired t-tests. Multivariable regression models were used to predict in-season changes in HRR at each time point using in-season changes in 1) VO\textsubscript{2max} and BF% and 2) T\textsubscript{max} and BF% as covariates.

Results: Compared to pre-season, post-season VO\textsubscript{2max} (3.98±0.42 v 3.78±0.35 ml/kg/min, p=0.002) and BF% (23.8±3.4 v 21.3±3.9%, p<0.001) decreased, while increases were noted in T\textsubscript{max} (11.7±1.3 v 12.6±1.3 minutes p=0.002) and LBM (50.6±5.5 v 52.3±6.0kg, p<0.001). There were increases in HRR\textsubscript{1min} (22.0±5.6 v 25.4±7.0bpm, p=0.008), HRR\textsubscript{2min} (32.1±5.8 v 44.8±7.3bpm, p<0.001) and HRR\textsubscript{3min} (37.7±5.8 v 51.3±5.7bpm p<0.001). After inclusion in the multivariable model, VO\textsubscript{2max} was not independently associated with HRR\textsubscript{1min} (p=0.40), HRR\textsubscript{2min} (p=0.31), or HRR\textsubscript{3min} (p=0.21). Tmax was independently related to HRR\textsubscript{1min} (p= 0.007), but not HRR\textsubscript{2min} (p= 0.56) or HRR\textsubscript{3min} (p= 0.99). BF% was independently related to HRR\textsubscript{3min} in both models (p=0.041 and p=0.023, respectively), but not HRR\textsubscript{1min} or HRR\textsubscript{2min} in either model (p>0.05 for all).

Conclusion: HRR is faster post-season and HRR\textsubscript{1min} is related to increases in Tmax. On the other hand, in-season changes in HRR do not reflect changes in VO\textsubscript{2max} and should not be used as an indirect measure of aerobic capacity in collegiate rowers.